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E-46100-Burjassot
Spain

Abstract

We apply techniques from Computer Aided Design of spatial curves to generate the trajecto-
ries of molecules involved in a chemical reaction. The main point is the use of Rotation Minimizing
Frames along the trajectories, defined as Bézier curves, to visualize the motion of the molecule
minimizing the twist.

1 Introduction
Computer tools can be used to visualize many different things, from real objects to physical or chem-
ical processes. Over the past few decades the technology available for such a purpose has increased
significantly as well as the possibilities of its use.

Visualizations and modelling can be very useful for educational purposes, for example in the
realm of Chemistry where it is often difficult to visualize atoms, molecules, reactions, etc. To acquire
the skill of thinking in 3D is not an easy task for a undergraduate student. A way to gain this skill is
thanks to live demonstrations which enhance the learning of concepts.

In particular, using these tools for exploring some aspects of the process taking place in a simple
chemical reaction is our main concern in this work. This proposal is predominantly being used for
teaching. Throughout this paper, we analyze an example of a chemical reaction in three dimensional
space where two reactants interchange an atom and are transformed into two products.

A first scenario for the visualization of a reaction of this type would be to bring the reactants
into the position in which the reaction occurs in a linear and uniform way, and after the reaction
they separate in the same manner. This situation is, nevertheless, unrealistic since it requires both
reactants, both products and the point of the reaction to be aligned. Moreover, its visualization is very
unsatisfactory.
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A second and more realistic scenario would be to allow the initial and final positions of the re-
actants to be chosen freely. In this situation we use Bézier curves for defining the trajectories of the
reactants and the products of the reaction.

Bézier curves are parametric curves that are often used in computer graphics and related fields
([5, 4, 7, 9]). Due to their nice properties, they are used in the modelling of smooth curves that can
be scaled indefinitely. The curve is contained in the convex hull of its control points, which is a set of
points that can be used to manipulate the curve. Thus, translations and rotations can be applied on the
curve by applying them to its control points.

There is, however, a problem here too. While the movement of each molecule describes a Bézier
curve towards and from the point of reaction, the molecules should also rotate on themselves to be
perfectly placed in front of one another at the moment of the reaction.

A first attempt to solve this problem would be to use a reference frame intrinsic to the curve, the
Frenet frame, to make the molecule rotate in space as if it was linked to that reference frame. Of
course, the movement of the molecule is computed thanks to isometries of the space. The problem
with this solution is that, as it is pointed out in [8], in many occasions, the Frenet frame of the curve
presents exaggerated rotations and sudden orientation changes.

There is a second option: use what is called a “rotation minimizing frame” (RMF) or “parallel
transport frame”. This is a concept that has recently attracted attention in the field of computer curve
design, see for example [3] and [8]. Due to its minimal twist, the rotation minimizing frame is widely
used in computer graphics. For example, in paper [10], some real life objects are designed using ruled
surfaces from a spine curve and a rotation minimizing vector. A RMF is a frame that is associated
with a curve and moves along its trajectory, very much like the Frenet frame, but reduces the nasty
rotations.

The main goal of this paper is to show how the concept of rotation minimizing frames has been
successfully applied to visualize simple chemical reactions in a natural way.

A Mathematica file can be downloaded from the web page of one of the authors
(www.uv.es/monterde/RMF-chemical-reaction.cdf) where it can be seen a model for the visualization
of the chemical reaction we have used as a prototypical example. The extension of the Mathematica
file (cdf) means Computable Document Format and the free program Mathematica Player (or Mathe-
matica v7) is needed to run the file.

2 A short introduction to Bézier curves
Bézier curves are polynomial curves which are very popular because of their mathematical properties
that allow us to manipulate them in several manners, although no special mathematical knowledge is
required, see for example [4], [9]. Given n+ 1 control points, P0, ..., Pn, the Bézier curve defined by
them is a polynomial curve of degree n. The polygon obtained by joining the control points with line
segments in the prescribed order is called the control polygon. Its shape reflects the “basic”shape of
the Bézier curve.

A Bézier curve of degree one is just a line segment joining the two control points. One of degree
two is a parabolic arc joining the first and last control points. In general, they can be defined in a
recursive way using the De Casteljau’s algorithm, where the main ingredient is linear interpolation.
Nevertheless, we will give the definition using Bernstein polynomials.
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Definition 1 Given a set of n + 1 control points P0, . . . , Pn ∈ Rn, n = 2, 3, the associated Bézier
curve, α : [0, 1]→ Rn, is defined as

α(t) =
n∑

i=0

Bn
i (t)Pi,

where

Bn
i (t) =

(
n

i

)
ti(1− t)n−i,

(
n

i

)
=

{
n!

i!(n−i)! , if 0 ≤ i ≤ n,

0, otherwise.

Since the Bézier curve is uniquely determined by its control points, in some cases we denote the curve
by α = B[P0, ..., Pn].

Fig. 1.- Left quadratic Bézier curve, center and right cubic Bézier curve with the same control points
but different order.

2.1 Properties of Bézier curves
Let us recall some properties and characteristics of Bézier curves.

1. Interpolation of the end points: The Bézier curve passes through the end points of the control
polygon α(0) = P0 and α(1) = Pn. Note that it’s not an interpolation polynomial curve.

2. Convex hull property: Every point of the Bézier curve lies always inside the convex hull of its
defining control points.

3. Symmetry: The control points, P0, P1, . . . , Pn and Pn, Pn−1, . . . , P0, define the same Bézier
curve, like a set. The only thing that changes is the direction in which we travel along the
curve. In fact,

α[P0, P1, . . . , Pn](t) = α[Pn, Pn−1, . . . , P0](1− t), for all t ∈ R.

Proposition 2 The derivative of a Bézier curve α(t) with control points P0, . . . , Pn is a new Bézier
curve of degree n− 1 with control points n∆P0, . . . , n∆Pn−1, this is,

α′(t) = n

n−1∑
i=0

Bn−1
i (t)∆Pi,

where ∆Pi = Pi+1 − Pi, for all i = 0, . . . , n− 1.

Remark 3 The tangent line at the initial(final) point is determined by its two first(last) control points

α′(0) = n∆P0 = n(P1 − P0), and α′(1) = n∆Pn−1 = n(Pn − Pn−1).

Moreover, a cubic Bézier curve is totally determined by its endpoints and their corresponding tangent
vectors.
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3 Adapted orthonormal frames
Definition 4 Given a C1 regular space curve, α : I → R3, an adapted right-oriented orthornormal
frame to α is a triple of unitary vector fields along α, {~t,~f ,~t ∧~f}, such that

~t =
α′

||α′||
and ~f⊥~t.

The pair {~f ,~t∧~f} span the normal plane of the curve in any point of α, so we only have to choose an
unitary vector on that plane,~f , in order to have an adapted orthornormal frame. The classical example
is the Frenet frame but this is not the only frame that can be attached to a curve.

3.1 Frenet frame
We are going to use the definitions and notations from reference [2].

Let α : I → R3 be an arc length parametric curve. Unless otherwise stated, the objects are of the
necessary order of derivability.

The curvature function of the curve is κ(s) = ||~̇t(s)||. The normal vector is defined by

~n(s) =
~̇t(s)

||~̇t(s)||
=
~̇t(s)

κ(s)
,

The set {~t(s), ~n(s), ~b(s) = ~t(s) ∧ ~n(s)} is an adapted frame, called the Frenet frame. The vector
~b(s) is called the binormal vector.

Since the Frenet frame is a basis of R3, we can express the derivatives of those vectors as a linear
combination of them.

Definition 5 Let α be an arc length parametric curve with non vanishing curvature, κ(s) = ||~̇t|| 6= 0
we define the torsion function as

τ(s) = −~̇n · ~b.

Therefore, the Frenet formulas are an expression of the first variation of the Frenet frame
~̇t(s) = κ(s)~n(s),

~̇n(s) = −κ(s)~t(s) −τ(s)~b(s),

~̇b(s) = τ(s)~n(s).

Remark 6 We are using for the sign of the torsion the same convention than in [2]. This is the
opposite sign convention from [8].

When the curve is not parameterized by arc length, the Frenet elements are calculated in the
following way:
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Proposition 7 Given a regular curve, α : I → R3, the Frenet frame is

~t =
α′

||α′||
, ~b =

α′ ∧ α′′

||α′ ∧ α′′||
, ~n = ~b ∧~t, (1)

and the curvature and torsion are the functions given, respectively, by

κ =
||α′ ∧ α′′||
||α′||3

, τ = −det(α′, α′′, α′′′)

||α′ ∧ α′′||2
. (2)

Example 8 Given the curve

α(t) = (3t− 3t2 + t3, 1− 3t2 + 2t3, 2t3), t ∈ R,

let us calculate the corresponding Frenet frame, the curvature and torsion of α(t). The curve is not
parametrized by the arc length therefore we use formulae (1) and (2).

~t = 1
1−2t+3t2

(t2 − 2t+ 1, 2t2 − 2t, 2t2),

~b = 1
1−2t+3t2

(−2t2, 2t2 − 2t,−t2 + 2t− 1),

~n = ~b ∧~t = 1
1−2t+3t2

(2t2 − 2t, t2 + 2t− 1,−2t2 + 2t),

κ = 2
3(1−2t+3t2)2

, τ = 2
3(1−2t+3t2)2

.

Fig. 2.- The curve with its Frenet frame and control points.

Remark 9 The curve in Example 8 is polynomial and therefore its restriction to the interval [0, 1] is
a cubic Bézier curve with control points

P0 = α(0) = (0, 1, 0), P1 = (1, 1, 0), P2 = (1, 0, 0), P3 = α(1) = (1, 0, 2),

where we used Prop. 2 in order to determine the control points P1 and P2 from α′(0) = 3(P1 − P0)
and α′(1) = 3(P3 − P2).
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3.2 Frenet frame at the endpoints of a Bézier curve
In order to model the motion of the molecules along Bézier curves in the following sections, we need
the initial and final positions (first and last control points) and a reference frame in the final position.
The Bézier curve of lower degree which can be defined with these conditions is a curve of degree 3.

We want to find a cubic Bézier curve with fixed initial and final points, P0 and P3 respectively,
and with a fixed Frenet frame at the final point given by a right oriented orthonormal basis

{~u1, ~u2, ~u3}.

What should the other points of control be? The solution is not unique. There are infinitely many
solutions for P1 and P2.

Proposition 10 Let P0 and P3 be two points in R3 and {~u1, ~u2, ~u3} be a right oriented orthonormal
frame in R3. The cubic Bézier curve, α : [0, 1] → R3 associated to the control points P0, P1, P2, P3

where P2 := P3 − µ~u1, µ ∈ R+

P1 := P2 + λ~u2 + ω~u1, λ ∈ R+, ω ∈ R,
(3)

satisfies the following conditions:

1. interpolates the endpoints, α(0) = P0 and α(1) = P3.

2. its Frenet frame at the final point is given by,{
~t(1) = ~u1, ~n(1) = ~u2, ~b(1) = ~u3

}
.

Proof. The first and second derivatives of the curve α at its endpoint, see Prop. 2, are respectively,

α′(1) = 3(P3 − P2) = 3µ~u1,
α′′(1) = 2 (3(P3 − P2)− 3(P2 − P1)) = 6µ~u1 − 6(−λ~u2 − ω~u1) = 6((µ+ ω)~u1 + λ~u2)

then
~t(1) =

α′(1)

||α′(1)||
= ~u1, ~b(1) =

α′(1) ∧ α′′(1)

||α′(1) ∧ α′′(1)||
=

18µλ~u1 ∧ ~u2

18µλ||~u1 ∧ ~u2||
= ~u3,

where we used that {~u1, ~u2, ~u3} is a right oriented orthonormal frame in R3.
Since the Frenet frame is also a right oriented orthonormal frame, we have that

~n(1) = ~b(1) ∧~t(1) = ~u3 ∧ ~u1 = ~u2.

Remark 11 In fact, all possible solutions are given in the statement of Prop. 10. Parameters µ, λ
and ω can be useful to adjust the shape of the curve as we will see later.

We will also use the previous result with different initial conditions because sometimes we will
need to build a curve when the given Frenet frame is at t = 0, not at t = 1 as in Prop. 10. In this case
we will compute the curve as in the statement, this is, as if the given Frenet frame was at t = 1, but
afterwards we travel along the curve reversing the direction.
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3.3 Rotation minimizing frames
Now we will define the notion of rotation minimizing frames, also known as relatively parallel adapted
frames or Bishop frames (see [1]), we will explore some of their properties and compare them to
Frenet frames. The main idea here is to avoid/limitate the unnecessary rotations of the adapted frame
in the normal plane to the curve.

Definition 12 (See [10] or [6]) Given a regular curve α : [0, 1] → R3 a right-oriented orthonormal
adapted frame, {~t,~f ,~t ∧~f} is a rotation-minimizing frame (in short RMF) if ~f ′ is parallel to ~t. Here,
the vector ~f is called the reference vector of the RMF.

Remark 13 Note that the reference vector is a vector field along the curve, ~f : I → R3, such that

(a) ~f ′(u)− ψ(u)~t(u) = 0

(b) ~f(u) ·~t(u) = 0

}
(4)

for some function ψ.

Remark 14 The RMF is determined only by the geometry of the curve and it’s independent of any
particular parameterization of the curve.

The condition~f ′ parallel to~t implies the vanishing of the projection onto the plane orthogonal to~t
of the derivative of~f , or in other words, that the vector field~f , along α, moves in a parallel way in the
sense of parallel transport (see [1]). Therefore, the only spatial rotation that ~f has is the one coming
from the curve α.

3.4 Integration of equations of the RMF

We start with the Frenet frame {~t, ~n, ~b = ~t ∧ ~n} of an arc length parametrized curve α and then we
calculate the RMF of this curve.

It is clear that the normal plane to the curve, at each point, is generated by vectors ~n and ~b, thus,
it is natural to look for a reference vector ~f of the form

~f(s) = A(s)~n(s) +B(s)~b(s)

for some functions A(s) and B(s). Hence, it is clear that in this way Eq. (4-(b)) is satisfied. Since
||~f(s)|| = 1, we can assume that A(s) = cos(ψ(s)) and B(s) = sin(ψ(s)). Therefore, differentiating
~f(s) and using Frenet formulas, we get

~̇f =
(

cosψ~n + sinψ~b
)′

= − sinψ ψ̇~n + cosψ~̇n + cosψ ψ̇~b + sinψ~̇b

= (−κ cosψ)~t + (−ψ̇ + τ) sinψ~n + (ψ̇ − τ) cosψ~b.

From Eq. (4-(a)), we have~̇f = ψ ·~t, so we have that~̇f · ~n = 0 = ~̇f · ~b, or equivalently,

(−ψ̇ + τ) sinψ = 0, and (ψ̇ − τ) cosψ = 0.
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Since the trigonometric functions, sin and cos, cannot be zero simultaneously, then ψ̇ = τ and

ψ(t) =

∫ t

t0

τ(s)ds =

∫ t

t0

τ(v)||α′(v)||dv, (5)

since ds = ||α′(v)||dv.

Example 15 We illustrate the process to calculate a rotation minimizing frame with the cubic curve
of Example 8,

α(t) = (3t− 3t2 + t3, 1− 3t2 + 2t3, 2t3), t ∈ [0, 1].

We have shown that the velocity and the torsion are

||α′(t)|| = 3(1− 2t+ 3t2), τ(t) =
2

3(1− 2t+ 3t2)2
.

Therefore, the angle defining the RMF of α(t) is

ψ(t) =

∫ t

0

τ(v)||α′(v)||dv =

∫ t

0

2

1− 2v + 3v2
dv =

√
2

(
arctan(

3t− 1√
2

) + arctan(
1√
2

)

)
.

So, the RMF of α is {~t(t),~f(t),~t(t) ∧~f(t)} where

~f(t) = cos(ψ(t))~n(t) + sin(ψ(t))~b(t)

~t(t) ∧~f(t) = cos(ψ(t))~b(t)− sin(ψ(t))~n(t).

t

b

n

f

g
φ

φ

The normal vector A rotation minimising vector

Fig. 3.- The curve α(t) and its Frenet frame and RMF (left), the curve and the normal vector field
(center) and a rotation minimizing vector field (right).

We can see in Fig. 3 the Frenet frame (shown in red) compared to the rotation minimizing frame
(shown in green) at a single point. The angle between the two frames is φ. Moreover, we can see that
the normal vector is rotating more than a rotation minimizing vector.
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4 The problem
Now we address the problem of modelling and visualizing, in a realistic way, the movement of two
separated molecules which are approaching to each other, then they react chemically, and separate
afterwards.

To begin with, let us suppose that all the reactions we are going to visualize involve two molecules,
each of one having more than two atoms.

In each reaction there is one atom that moves from one molecule to the other. We will call this
atom the transfer atom. Before the reaction, this atom is joined to the first molecule by a bond. At
the reaction time, another bond is formed between the atom and the second molecule. The reaction
ends when the bond with the first molecule is subsequently broken and the transfer atom is only joined
to the second molecule.

The atom of the first molecule, having a bond with the transfer atom will be called the principal
atom of the first molecule. The atom of the second molecule which captures the transfer atom and
forms a bond with it, will be called the principal atom of the second molecule. On these two
principal atoms will be set the origin for each one of the reference frames of the respective molecules.

The vector defined by the relative positions of the transfer atom and the principal atom on the
second molecule, that is the vector settled by the bond formed between these two atoms, will be
called the reaction vector.

We can construct a reference frame for each one of the molecules in the instant of the reaction. For
the first molecule we will initially consider the reaction vector, say ~u, and the vector defined by the
bond between its principal atom and the transfer atom, say ~v. From {~u, ~v} we can construct another
two vectors, say ~x and ~y such that ~x · ~y = 0, ||~x|| = ||~y|| = 1, and Span({~u, ~v}) = Span(~x, ~y}).
The third vector of the reference frame is defined as the vector product of ~x and ~y: ~z = ~x ∧ ~y. Thus
{~x, ~y,~z} is a right oriented orthonormal basis.

For the second molecule we will initially consider the reaction vector and the vector defined by
another bond in this molecule to which the principal atom is also joined. We then repeat the process of
forming a right oriented orthonormal basis that generates the same vector subspace and we complete
this basis with the vector product of the two initial vectors.

Therefore we have, in this way, a reference frame attached to each molecule. When a translation
and/or rotation is applied to the reference frame, this same rigid movement is applied to the whole
molecule. This is to say that the distances and angles between the atoms in the molecule remain the
same.

To get a better understanding of what we are doing we will use as an example a classical chemical
reaction of the kind “acid–base reaction”.

Example 16 The reactants are Hydrogen Sulphide (H2S) which is an acid and Ammonia (NH3)
which is a base. The product of the reaction, NH4 + SH− is called “Ammonium Hydrogen Sul-
phide”.
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Let Rk denote the coordinates of atom k in the position of the reaction and suppose that


R1 = (2.89, 0., 0.),

R2 = (3.83, 0.79, 0.),

R3 = (4.79, 0., 0.),


R4 = (5.84, 0., 0.),

R5 = (6.23,−0.48,−0.83),

R6 = (6.23,−0.48, 0.83),

R7 = (6.23, 1., 0.).

(6)

Remark 17 At the reaction time the seven atoms form a molecule as a whole. Internal distances and
angles between atoms are fixed, but the position of this molecule at the space is arbitrary. Positions
given by (6) have been chosen to obtain later a simple frame at the reaction point. For example, the
axis defined by the bond between atoms 3 and 4 is the x-axis. The choice of the position of atoms 2, 3
and 4, fixes the position of the rest.

The molecule on the left approaches the other, the bond between atoms 2 and 3 is broken and atom
3 bonds with atom 4 of the molecule on the right.

Fig. 4.-Left, Hydrogen Sulphide(left) and Ammonia(right) before the reaction. Right the product of
the reaction.

In this example, the transfer atom is atom number 3. The principal atom of the first molecule is
atom number 2 and the principal atom of the second molecule is atom number 4. The reaction vector
is the vector joining R3 and R4. The reference frames for the two molecules will be constructed later
on.

4.1 The solution when only one molecule moves
We will work only with the movement from the initial position to the position just before the reaction.
In Fig. 4 we can see that there is a bond on the moving molecule that binds atoms 2 and 3, and
this bond will disappear upon reaction with the other molecule. It is atom 3 that will be trapped by
molecule 2.

We will define a Bézier curve on which atom 2 will be moving, from its initial position towards its
position at the instant of the reaction. As determining as it is the position at the instant of the reaction,
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we will construct a reference frame on the molecule that is moving to this position before the reaction.
The frame is defined by the three following vectors:

1. The reaction vector, the vector defined by the bond to be formed. In the example, this vector is
defined by the positions of atoms 3 and 4 at the instant of the reaction:

~u1 =
R4 −R3

||R4 −R3||
=

(5.84, 0., 0.)− (4.79, 0., 0.)

||(5.84, 0., 0.)− (4.79, 0., 0.)||
= (1, 0, 0).

2. To define ~u3, first we select a different bond from the first molecule, in the example we choose
the bond between 2 and 3 and we call it ~v. The vector ~u3 is now the normalization of the
vector product ~u1 ∧ ~v. In the example, ~v = R3 − R2 = (4.79, 0., 0.) − (3.83, 0.79, 0.) =
(0.96,−0.79, 0.), and

~u3 =
~u1 ∧ ~v
||~u1 ∧ ~v||

=
(1, 0, 0) ∧ (0.96,−0.79, 0.)

0.79
= (0, 0,−1).

3. Finally, the third vector, ~u2 = ~u3 ∧ ~u1. In the example, ~u2 = (0, 0,−1)∧ (1, 0, 0) = (0,−1, 0).

Thus, the family of vectors {~u1 = (1, 0, 0), ~u2 = (0,−1, 0), ~u3 = (0, 0,−1)} is a positively
oriented orthonormal basis.

We now need to look for the cubic Bézier curve with the following conditions:

1. Interpolates the endpoints: the initial point (t = 0) is the position of atom 2 in the initial instant,
I2 and the final point (t = 1) is the position of atom 2 in the instant before the reaction, R2.

2. The Frenet frame at the final point is the frame that we have constructed

{~t(1) = ~u1, ~n(1) = ~u2, ~b(1) = ~u3}.

The Bézier curve of lower degree that can be defined with these conditions (see Prop. 10) is a
curve of degree 3 that has control points:

1. P0 = I2 and P3 = R2, because interpolates position of atom 2.

2. P2 = P3 − µ~u1 = R2 − µ R4−R3

||R4−R3|| .

3. For P1 we will apply Eq. (3) with λ = 1 and ω = 0,

P1 = P2 + ~u2 = R2 − µ R4−R3

||R4−R3|| + ~u1∧~v
||~u1∧~v|| ∧ ~u1

= R2 − µ R4−R3

||R4−R3|| + (R4−R3)∧(R3−R2)
||(R4−R3)∧(R3−R2)|| ∧

R4−R3

||R4−R3|| .

Remark 18 In order to construct the associated Bézier curve, we only need the initial position of
atom 2, I2, and the reaction position of atoms 3, 4 and 2, R3, R4 and R2. This is because the other
initial positions will be computed from the Bézier curve and the rotation minimizing frame.
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The parameters µ and λ are used to manipulate the curve. In our example, if µ = 1 the trajectory
of the molecule would not approach the point of reaction in a linear way. We have set µ = 3, λ = 1
and ω = 0. By doing so, the molecule approaches the reaction point almost in a straight line. This
resembles more accurately what occurs in reality, when molecules have a reaction they are attracted
to each other and as they begin to get closer the attraction forces them together in the quickest way
possible - that is, linearly. With those values of the parameters we are able to capture this linear
movement close to the point of the reaction, thus making our visualization more realistic.

In the example, the value of the initial position I2 = (−2,−2, 3), reaction positions R2, R3, R4

given in (6) and values µ = 3, λ = 1, ω = 0 determine the control points

P0 = (−2,−2, 3), P1 = (0.83,−0.21, 0.), P2 = (0.83, 0.79, 0.), P3 = (3.83, 0.79, 0.),

and the cubic Bézier curve

α(t) = (−2.+8.49 t−8.49 t2 +5.83 t3,−2.+5.37 t−2.37 t2−0.21 t3, 3.−9. t+9. t2−3. t3). (7)

4.2 Reference system that minimizes the rotation
The frame is needed because the molecule has to move rigidly. Placing the Frenet frame at the final
point of the constructed trajectory we are sure that final position of the molecule is correct.

We have already calculated the Bézier curve, so this is a good point to start. From here we can
move on to calculate the RMF. Let us see what happens in the example which we are working with:

First we must calculate the torsion, see Eq. (2), of the curve given in (7),

τ(t) = − 972.0

5510.88− 31891.3 t+ 92694.1 t2 − 101319.0 t3 + 37921.0 t4
.

We can then move on to calculate the function ψ(t) defined by Eq. (5). However the function to
integrate in our example is

τ(t)||α′(t)|| = −0.50
√

0.47− 1.71 t+ 2.81 t2 − 2.36 t3 + t4

0.15− 0.84 t+ 2.44 t2 − 2.67 t3 + t4
.

The angle function ψ(t) does not have an integral expressible by comprehensive known functions,
as was the case in Example 15. It can only be calculated numerically. As the function ψ(t) cannot
explicitly be calculated, neither can the rotation minimizing frame.

Notice that, since we have prescribed the Frenet frame at t = 1 but not at t = 0, then Eq. (5) can
be developed as follows:

ψ(t) =

∫ t

t0

τ(s)ds = ψ0 +

∫ t

0

τ(s)ds.

We can compute ψ0 by noticing that ψ(1) = 0. Indeed,

0 = ψ(1) = ψ0 +
∫ 1

0
τ(s)ds→ ψ0 = −

∫ 1

0
τ(s)ds,

and the angle defining the RMF is

ψ(t) = −
∫ 1

0

τ(s)ds+

∫ t

0

τ(s)ds = −
∫ 1

t

τ(s)ds.
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Remark 19 A solution that was initially considered was to set the Frenet frame at the starting and
final points. This requires the use of a curve of degree 6. The problem here is that making the molecule
to move along the curve and rotate according to the Frenet frame of the curve, there are instances
where the molecule rotates too much.

To avoid this problem, it is necessary to use another frame associated with the curve, one that
minimizes the rotation of the normal plane around the unitary tangent vector to the curve. However,
for the moment it is not known how to calculate this frame if it is fixed to the Frenet frame at both the
initial and final points.

Now we are going to compute the expression of the RMF in terms of the Frenet frame. According
to Section 3.4, the vector field ~u = cosψ ~n+ sinψ ~b is a reference vector of the RMF and, according
to Definition 12, {~t, ~u, ~v := ~t ∧ ~u} is a RMF adapted to the curve. An easy computation shows that
~v = − sinψ ~n + cosψ ~b.

Once we have both the curve, α and the rotation minimizing frame we have to compute the
position of the molecule at the instant t ∈ [0, 1]. This can be done as follows: For each t, we have an
affine frame defined by an origin point α(t) and a basis {~t(t), ~u(t), ~v(t)}. Since the positions of the
atoms at the reaction time, this is for t = 1, are known, all we have to do is to transport each atom
from t = 1 to another t ∈ [0, 1[ using the rigid motion defined by the corresponding affine frames.
The rigid motion is the composition between the translation sending α(1) into α(t) and the spatial
rotation transforming {~t(1), ~u(1), ~v(1)} into {~t(t), ~u(t), ~v(t)}.

Let Tt be the matrix defined by the right oriented orthonormal basis, {~t(t), ~u(t), ~v(t)}, or equiv-
alently, the spatial rotation transforming the canonical basis into {~t(t), ~u(t), ~v(t)}. Thus, the spatial
rotation transforming {~t(1), ~u(1), ~v(1)} into {~t(t), ~u(t), ~v(t)} is the composition Tt ◦ T−11 .

Therefore, the position of the k-th atom in the prototypical example we are working with, is

α(t) + Tt
(
T−11 (Rk −R7)

)
,

where Tt denotes the matrix formed by the three vectors of the RMF at the instant t ∈ [0, 1], and T−11

is the inverse of this matrix when t = 1. It is easy to check that for t = 1, the final position of atom k
in the molecule is obtained. Indeed,

α(1) + T1
(
T−11 (Rk −R7)

)
= R7 +Rk −R7 = Rk.

4.3 The solution when both molecules move
We have derived a solution to our problem when one molecule (Hydrogen Sulphide) moves and the
other one (Ammonia) remains still, see Fig. 5. Now, we will look for a solution when both molecules
move towards each other, then they react and move away.

In this case, it is necessary to construct four Bézier curves:

1. α1
A - from the initial position of A to the position of A at the instant of the reaction.

2. α2
A - from the position of A at the instant of the reaction to the final position of A.

3. α1
B - from the initial position of B to the position of B at the instant of the reaction.
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4. α2
B - from the position of B at the instant of the reaction to the final position of B.

All these curves follow atom 2 for αA and atom 4 for αB. They are constructed as in Subsection
4.1, so, we only need to specify the initial positions of the principal atoms of both molecules

I2 = (−2,−2, 3), I4 = (12, 4,−3),

the positions at the instant of the reaction given in Eq. (6), the final positions of the principal atoms
of both molecules

F2 = (−2, 2,−3), F4 = (12,−4, 3),

and the value of the parameters µ, λ, ω of Prop. 10. For all these curves, we choose µ = 3, λ = 1 and
ω = 0.

The initial and final positions of the atoms 1,3,5,6 and 7 are calculated from I2, I4, F2, F4 and
from the positions of all the atoms at the instant of the reaction (see Remark 18).

Fig. 5.- Three positions of the reactant for t = 0, 0.5 and 1. The Bézier curve is also shown.

4.3.1 The curve of the first reactant

Given that the positions at the instant of the reaction of all the atoms and the initial position of the
principal atom of the first molecule are the same as those handled in Subsection 4.1, the Bézier curve
α1
A is just the one given in (7),

α1
A(t) = (−2.+ 8.49 t− 8.49 t2 + 5.83 t3,−2.+ 5.37 t− 2.37 t2 − 0.21 t3, 3.− 9. t+ 9. t2 − 3. t3),

with control points

P0 = (−2,−2, 3), P1 = (0.83,−0.21, 0.), P2 = (0.83, 0.79, 0.), P3 = (3.83, 0.79, 0.).

4.3.2 The curve of the first product

We will now calculate the curve, α2
A, of the first molecule after the reaction. In this case the curve α2

A

should start in the position at the instant of reaction of atom 2, R2, terminating at the final position of
this atom, F2. The Frenet frame should also be fixed in the instant of the reaction. Applying Prop. 10
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to a curve having F2 as its initial point and R2 as its final point, then the Frenet frame is fixed at the
final point of the curve. Once the curve has been calculated we reverse its direction.

In this way, the only difference between this curve and α1
A is the initial point. If before it was I2,

now it is F2. Thus, the control points of the curve, according to Prop. 10, are

P0 = (−2, 2,−3), P1 = (0.83,−0.21, 0.), P2 = (0.83, 0.79, 0.), P3 = (3.83, 0.79, 0.),

and the associated Bézier curve is

(−2.+ 8.49 t− 8.49 t2 + 5.83 t3, 2.− 6.63 t+ 9.63 t2 − 4.21 t3,−3.+ 9. t− 9. t2 + 3. t3).

Once we have reversed the direction of the curve under the change of parameter t → 1 − t, the
control points (due to the symmetry property of Bézier curves, see Subsection 2.1) become

P0 = (3.83, 0.79, 0.), P1 = (0.83, 0.79, 0.), P2 = (0.83,−0.21, 0.), P3 = (−2, 2,−3),

and the associated Bézier curve is

α2
A(t) = (3.83− 9. t+ 9. t2 − 5.83 t3, 0.79 − 3. t2 + 4.21 t3,−3. t3).
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Fig. 6.- The two control polygons of the curves modelling the movement of the first molecule.

4.3.3 The curve of the second reactant

Now we proceed to calculate the parametric form of curve, α1
B, which describes the trajectory of the

principal atom of the second molecule, namely, atom 4, from its initial position (I4 = P0) to the
position at the instant of the reaction (R4 = P3).
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In this case, we apply Prop. 10, as in Subsection 4.1, to vector ~u1 = R3−R4

||R3−R4|| = (−1, 0, 0) and
in order to define the binormal vector at the final point, ~u3, we use the vector that joins the principal
atom, 5, with the atom 4, ~v = R4 −R5 and then

~u3 =
~u1 ∧ ~v
~||u1 ∧ ~v||

= (0, 0.87,−0.50) and ũ2 = ũ3 ∧ ũ1 = (0, 0.50, 0.87).

Thus, the control points for µ = 3, λ = 1 and ω = 0 are

P0 = (12, 4,−3), P1 = (8.84, 0.50, 0.87), P2 = (8.84, 0., 0.), P3 = (5.84, 0., 0.),

and the associated Bézier curve:

α1
B(t) = (12.−9.47 t+9.47 t2−6.16 t3, 4.−10.50 t+9. t2−2.50 t3,−3.+11.60 t−14.20 t2+5.60 t3).

4.3.4 The curve of the second product

We will now calculate the curve, α2
B, which describes the trajectory of the second molecule from its

position in the instant of the reaction to its final position. As before, the only change, with respect to
the curve of the second reactant, is that now P0 = F4.

Therefore, the control points of the curve, according to Prop. 10 for µ = 3, λ = 1 and ω = 0, are

P0 = (12,−4, 3), P1 = (8.84, 0.50, 0.87), P2 = (8.84, 0., 0.), P3 = (5.84, 0., 0.),

and the associated Bézier curve:

(12.− 9.47 t+ 9.47 t2 − 6.16 t3,−4.+ 13.50 t− 15.00 t2 + 5.50 t3, 3.− 6.40 t+ 3.81 t2 − 0.40 t3).

Once we have reversed the direction of the curve under the change of parameter t → 1 − t, the
control points are

P0 = (5.84, 0., 0.), P1 = (8.84, 0., 0.), P2 = (8.84, 0.50, 0.87), P3 = (12,−4, 3),

and the associated Bézier curve:

α2
B(t) = (5.84 + 9. t− 9. t2 + 6.16 t3, 1.50 t2 − 5.50 t3, 2.60 t2 + 0.40 t3).
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Fig. 7.- The two control polygons of the curves that model the movement of the second molecule.
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In Fig. 8 we can see that curve α1
A is the one modelling the trajectory of atom 2 in the first

molecule, whereas the curve α1
B describes the trajectory of atom 4 of the second molecule. The two

curves do not meet but if we leave the transfer atom in the exact position of the reaction, in front of
atom 4, the bond between the transfer atom and atom 4 is what we have used as the reaction vector.

Fig. 8.- Visualization of the frames of the two molecules at the reaction point, used to define the
respective Bézier curves.

5 Conclusion
We have seen how the techniques of Bézier curves can be applied to visualize a simple chemical
reaction in three dimensional space.

The motion of each molecule (reactant or product) is determined thanks to two things:
– first, a curve which describes the trajectory of an atom of the molecule and,
– second, a way of computing how the molecule rotates around itself as it approaches or leaves

the reaction point.
The first step can be solved in many ways, but the simplest one, a linear curve, would produce an

unrealistic visualization of the process. Instead, we have used here Bzier curves, this is, polynomial
parametrized curves of the minimum possible degree according to the restrictions we have.

For the second step, notice that rotation of the molecule as it goes along the curve can be defined
using a moving frame adapted to the curve. In this way, a reference frame is attached to each molecule.
When a translation and/or rotation is applied to the reference frame, this same rigid movement is
applied to the whole molecule. Nevertheless, to visualize a simple chemical reaction in a natural way
it is crucial to introduce no more rotation than the strictly necessary. This can be achieved thanks to
the concept of Rotation Minimizing Frame.
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Although we have applied these techniques to a particular reaction, they can be used with a large
quantity of different reactions. We hope to apply all of this to a variety of other cases in the future.

The visualizations that we have included were programmed using Mathematica. It is possible to
export as a .pdb (protein data base) file the positions of all the atoms from a discretization of the
visualization. In this way the results can be used in other platforms, such as CrystalMaker or Java.
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